Two notes on Rankin's book on the modular group
نویسندگان
چکیده
منابع مشابه
Two Notes on the Variety Generated by Planar Modular Lattices
Let Var(Mplan) denote the variety generated by the class Mplan of planar modular lattices. In 1977, based on his structural investigations, R. Freese proved that Var(Mplan) has continuumly many subvarieties. The present paper provides a new approach to this result utilizing lattice identities. We also show that each subvariety of Var(Mplan) is generated by its planar (subdirectly irreducible) m...
متن کاملNotes on the Dutch Book Argument
The object here is to sketch the mathematics behind de Finetti’s (1931, 1937) argument for the Bayesian position. Suppose a bookie sets odds on all subsets of a set, accepting bets in any amount (positive or negative) on any combination of subsets. Unless the odds are computed from a prior probability, dutch book can be made: for some system of bets, the clever gambler wins a dollar or more, no...
متن کاملsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولon the effects of pictorial clues on the efl learners listening comprehension development
the following null hypothesis was proposed: there is no significant difference between the efl students listening comprehension development receiving pictorial cues and those receiving no cuse. to test the null hypothesis, 52 male and femal freshmen students of medicine studing at iran university of medical scinces were randomly selected from a total population of 72 students. to ensure that th...
15 صفحه اولNotes on the symmetric group
Recall that, given a set X, the set SX of all bijections from X to itself (or, more briefly, permutations of X) is group under function composition. In particular, for each n ∈ N, the symmetric group Sn is the group of permutations of the set {1, . . . , n}, with the group operation equal to function composition. Thus Sn is a group with n! elements, and it is not abelian if n ≥ 3. If X is a fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1973
ISSN: 0004-9735
DOI: 10.1017/s1446788700015433